Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Генетический анализ крови – звучит дорого, сложно и долго. Но на самом деле, это уже стандартный метод диагностики в лабораториях. Генетические тесты теперь назначаются для оценки индивидуальной реакции на лекарства, для проверки наследственных заболеваний, установления родства и даже для профилактических целей.

С расшифровкой генома человека в ХХ веке, мы стали понимать, как наш личный “код” влияет на жизнь. Несмотря на споры в научной сфере, мы можем оценить полезность долгосрочных исследований: теперь доступна молекулярно-генетическая диагностика.

В данной статье мы расскажем, как проводится генетический анализ крови и для чего это нужно.

Метод молекулярно-генетической диагностики является новым способом обследования организма, которое позволяет точно и быстро выявить вирусы и инфекции, мутации генетических материалов, вызывающих различные заболевания, а также оценить риски наследственных и других заболеваний. Однако, этот метод обладает далеко не полным спектром возможностей исследования ДНК.

Одним из главных преимуществ молекулярно-генетической диагностики является то, что это исследование проводится in vitro, минимизируя необходимость медицинского вмешательства. Благодаря этому метод можно успешно применять для диагностики заболеваний у эмбрионов, а также у ослабленных и тяжелобольных пациентов.

Кровь из вены является самым распространенным материалом для исследования молекулярно-генетической диагностики. Тем не менее, возможно извлечение ДНК/РНК из жидкостей и тканей других органов: слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос, ногтей и т.д.

Этот метод молекулярно-генетической диагностики является значительным шагом к персонализированной медицине, так как он позволяет учитывать все особенности конкретного пациента при его обследовании и лечении.

Методы молекулярной диагностики находят широкое применение в различных областях медицины. Рассмотрим основные задачи и направления, где активно используется молекулярная диагностика.

Выявление патологий. Метод молекулярной диагностики используется в том числе в случаях, когда инфекционные или вирусные заболевания не могут быть определены с помощью обычных методов. Он позволяет обнаружить болезнь на ранней стадии еще до появления видимых симптомов.

Исследование аллергических реакций. Молекулярная диагностика применяется для определения аллергии: это более точный и безопасный метод для пациента, так как отсутствует прямой контакт с аллергеном.

Индивидуальная оценка рисков развития наследственных заболеваний. Метод молекулярной диагностики помогает выявить риск возникновения опасных патологий в будущем у взрослых и детей. Информация о моногенных болезнях позволяет оценить риски передачи наследственных заболеваний от родителей к ребенку, а знание о предрасположенности к мультифакторной патологии необходимо для профилактики болезней с помощью изменения образа жизни.

Перинатальная медицина. Метод молекулярной диагностики позволяет выявлять синдромы Дауна, Эдвардса, Патау, Тернера, Клайнфельтера еще до рождения ребенка. Также он помогает выявить генетические причины бесплодия и невынашивания беременности.

Фармакогенетика. Молекулярная диагностика позволяет объяснить, почему на некоторых людей действуют одни лекарства, а на других — иные. Это имеет особое значение для лечения тяжелых заболеваний, например, онкологических.

Спортивная медицина. Молекулярная диагностика помогает прогнозировать спортивные перспективы, учитывая генетические особенности каждого человека. Это полезно для того, чтобы выбрать для ребенка занятия, которые принесут ему наибольшую пользу для здоровья или позволят достичь спортивных результатов.

Многие медики видят в молекулярной диагностики возможность индивидуальной подборки препаратов для каждого пациента, учитывая его генетические особенности. Эта персонализированная терапия должна значительно уменьшить побочные эффекты лекарств и сделать лечение более эффективным.

Генетические исследования становятся все более популярными, когда пациент желает получить информацию о своем здоровье. Обычно это необходимо в следующих ситуациях:

  1. Для установления точного диагноза. Например, неправильная идентификация аллергена или недооценка вирусного заболевания. Это имеет прямое влияние на эффективность лечения;
  2. Для профилактики возможных нарушений. Если пациент знает, что у него повышенный риск сердечно-сосудистых заболеваний или рака, он может принимать соответствующие меры, такие как отказ от вредных привычек;
  3. Для повышения эффективности лечения. Например, онкологические заболевания имеют множество вариантов лечения. Использование метода проб и ошибок приводит к потере времени и жизненных сил, а также, в ряде случаев, к летальному исходу.

Одной из важных категорий генетических исследований является изучение ДНК в связи с планированием или рождением ребенка. Родители часто обращаются в лаборатории для:

  1. Изучения своей генетической совместимости, оценки рисков наследственных заболеваний у потомка;
  2. Исследования состояния плода и выявления синдромов и опасных заболеваний;
  3. Диагностики заболеваний и аллергических реакций у младенца;
  4. Определения наиболее подходящих видов спорта, питания и образа жизни ребенка, а также того, что следует избегать;
  5. Установления отцовства или материнства.

Статья "Этапы молекулярно-генетических исследований"

Если вы намерены провести молекулярно-генетическое исследование, то необходимо знать, что любой его метод включает в себя ряд этапов:

  1. Взятие биоматериала. Это может быть кровь пациента или другой материал. После того, как биоматериал получен, он маркируется и транспортируется в лабораторию.
  2. Выделение ДНК/РНК. Для проведения анализов требуется чистая ДНК или РНК. Существует несколько методов извлечения, которые позволяют получить эту материю надежно и без потерь.
  3. Проведение исследований по выбранному методу. После подготовки образцов с помощью ДНК или РНК происходит проведение молекулярно-генетических исследований. Конкретный метод изучения зависит от цели исследования.
  4. Изучение и интерпретация результатов. Полученные результаты нужно обработать и проанализировать. Для этого подойдет программное обеспечение для анализа данных. Номер индивидуального протокола лучше сохранять, чтобы в дальнейшем иметь возможность его прочитать.
  5. Выдача заключения. На последнем этапе исследования вы получите заключение, которое будет содержать описание метода, используемых реактивов, конечных результатов и других особенностей этого исследования.

Таким образом, любое молекулярно-генетическое исследование должно пройти эти этапы, чтобы быть завершенным.

Методы молекулярно-генетической диагностики – это совокупность лабораторных методов, основанных на анализе генетического материала (ДНК и РНК). Они позволяют определять наличие или отсутствие генетических изменений, а также выявлять наследственную предрасположенность к различным заболеваниям.

Одним из наиболее распространенных методов молекулярно-генетической диагностики является полимеразная цепная реакция (ПЦР). Этот метод позволяет увеличивать количество копий генетического материала для дальнейшего анализа. Также существуют методы, основанные на гибридизации (соединении генетических материалов по определенным закономерностям), например, гибридизационный анализ с использованием РНК-зонда.

Методы молекулярно-генетической диагностики широко применяются в медицине для диагностики наследственных заболеваний, а также в судебно-медицинской экспертизе для определения отцовства или материнства. Они позволяют получить точные и надежные результаты, а также ускорить процесс диагностики и лечения.

Методы молекулярной цитогенетики являются эффективным средством для выявления наследственных заболеваний, психических отклонений и врожденных пороков развития. Цитогенетический анализ проводится для изучения хромосом с помощью специальных микроматриц, нанесенных на ДНК-чипы. Для этого из образца крови выделяют лимфоциты, помещая их на 48-72 часа в питательную среду, после чего проводят их исследование. Обычно данный анализ назначается нечасто, главным образом для изучения причин бесплодия и невынашивания беременности, а также для уточнения диагноза у детей при подозрении на врожденные заболевания. Точность цитогенетического анализа очень высока, однако метод является трудоемким и длительным, так как результат можно получить только через 20-30 дней после сдачи исследуемого образца.

Одним из достоинств цитогенетического анализа является его специфичность, которая позволяет выявлять практически без погрешностей небольшое количество патологий, таких как, например, аутизм. Но в то же время данный метод имеет и недостатки, так как не способен выявить многие другие наследственные заболевания.

Метод полимеразной цепной реакции (ПЦР) – это фундаментальный и, до сегодняшнего дня, наиболее распространенный метод в молекулярной диагностике. Изобретенный в 1983 году, этот метод отличается высокой точностью, чувствительностью и скоростью проведения исследования. Его использование позволяет выявлять ряд патологий, среди которых такие, как ВИЧ, различные вирусные гепатиты, инфекции, передающиеся половым путем, туберкулез, боррелиоз, энцефалит и многие другие.

Подход для проведения диагностики на базе ПЦР предполагает выбор участка ДНК и многократное его дублирование с помощью специальных реагентов лаборатории. Для проведения диагностики исследуются различные биоматериалы, среди которых кровь, слюна, моча, выделения из половых органов, плевральная и спинномозговая жидкость, ткани плаценты и др.

FISH: метод выявления атипичных генов

Метод флуоресцентной гибридизации (FISH) – это молекулярный метод исследования уникальных нуклеотидных соединений отдельной хромосомы или ее участка. Для этого используются короткие меченые флуоресцентными маркерами ДНК-последовательности, так называемые зонды, которые выявляют фрагменты с атипичными генами. Биологический материал для исследования может быть любым – кровь, костный мозг, плацента, ткани эмбриона, биопсия и т.д. Однако, важно, чтобы образец доставили в лабораторию немедленно после его получения.

FISH-метод широко используется в онкологии, например, для отслеживания остаточных злокачественных клеток после курса химиотерапии, в пренатальной диагностике для оценки риска развития у плода врожденных пороков, а также в гематологии. Этот метод выявления атипичных генов является очень чувствительным и точным, его погрешность составляет около 0,5%, а результат можно получить уже через 72 часа. Однако, у FISH есть и недостатки: он более специфичен, чем микроматричный цитогенетический анализ, и может использоваться только для подтверждения или опровержения предполагаемого диагноза.

Метод микрочипирования основан на использовании зондов, помеченных флуоресцентными последовательностями ДНК, которые извлекаются из биоматериала пациента. Эти зонды затем сравниваются с образцами, размещенными на микрочипе, который представляет собой стеклянную, пластиковую или гелевую базу, способную вместить тысячи микротестов, длиной от 25 до 1000 нуклеотидов. ДНК-микрочип может использоваться для анализа любого биоматериала, из которого можно извлечь образец ДНК/РНК.

Этот метод применяется в медицине, в том числе в онкологии и кардиологии для изучения генетической предрасположенности и оценки состояния организма. Он точен и чувствителен, результаты исследования готовы через 4–6 дней после забора материала.

Однако, в России микрочипирование применяют редко, что является его основным недостатком. В западных странах исследования ДНК/РНК уже распространены повсеместно, но в России эту услугу предлагают не все клиники.

Важно отметить, что молекулярная диагностика является неинвазивным и точным методом обследования организма, который нашел применение в разных областях медицины. Однако, информация, связанная со здоровьем и медициной, представлена только для ознакомительных целей и не должна стать поводом для самодиагностики или самолечения.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *