Как повысить КПД электродвигателя: выбираем решение

Как повысить КПД электродвигателя: выбираем решение

Современные электромеханические преобразователи, несмотря на высокую эффективность, все же не обходятся без некоторых потерь энергии, как магнитной, так и электрической и механической. Эти потери сопровождаются выделением тепла, усилением шума и вибрации, которые обусловлены неизбежным трением элементов, перемагничиванием в магнитном поле сердечника якоря электродвигателя, а также скачками нагрузок.

В связи с этим возникает вопрос: можно ли снизить такие "утечки" и, в итоге, повысить коэффициент полезного действия системы? Если да, то как это достичь? Для ответа на эти вопросы мы и подготовили данную статью.

Современные методы для улучшения КПД асинхронных двигателей

По общепринятой классификации, электрические машины бывают синхронными и асинхронными. Синхронные машины имеют одинаковую частоту вращения ротора и магнитного поля, тогда как магнитное поле асинхронных машин вращается с более высокой скоростью, чем ротор. Асинхронные электродвигатели более популярны и пользуются более широким распространением: около 90% всех электродвигателей на планете являются асинхронными. Они используются во многих отраслях, включая промышленность, сельское хозяйство и сферу ЖКХ. Это происходит потому, что такие механизмы просты в производстве, достаточно надежны, экономичны и не требуют больших затрат на эксплуатацию. Кроме того, КПД асинхронных электродвигателей гораздо выше, чем у синхронных.

Однако эта техника также имеет существенные недостатки. Например, высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что может привести к резкому увеличению силы тока и избыточным механическим нагрузкам при запуске и снижению КПД в периоды пониженной нагрузки), а также невозможность точной регулировки скорости работы механизма. Все эти факторы значительно снижают эффективность работы системы.

В настоящее время производители стремятся улучшить КПД асинхронных электродвигателей. Существуют различные методы для достижения этой цели. Использование частотно-управляемых преобразователей позволяет регулировать частоту вращения мотора и величину подаваемого напряжения, что позволяет снизить пусковой ток и улучшить точность регулировки скорости. Кроме того, установка встроенного электронного устройства контроля и регулирования может существенно повысить КПД системы. Новые технологии и материалы также могут улучшить работу электродвигателей.

Оптимизируем работу промышленного оборудования с помощью контроллеров-оптимизаторов. Эти устройства способны повысить КПД дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования, используемого в различных сферах: промышленности, сельском хозяйстве и ЖКХ.

Кроме этого, контроллеры-оптимизаторы могут предотвратить перегрузки кронштейнов при запуске мешалок, нейтрализовать гидроудары в трубопроводах, а также обеспечить плавный запуск тяжелого и очень тяжелого оборудования. Обычные устройства плавного пуска не всегда справляются с этой задачей.

В статье рассказывается о том, как контроллеры-оптимизаторы могут помочь повысить КПД оборудования за более доступную цену, по сравнению с преобразователями. Например, по цене примерно от 90 до 140 тысяч рублей, можно приобрести устройство мощностью 90 кВт от отечественного производителя.

Контроллеры-оптимизаторы – это устройства, которые быстро реагируют на изменение напряжения и снижают расходы электроэнергии на 30-40%. Они также помогают уменьшить воздействие реактивной нагрузки на сеть, повысить КПД привода, а также экономят деньги на конденсаторных компенсирующих устройствах. Применение контроллеров-оптимизаторов также помогает продлить срок службы оборудования и повышает экологичность производства.

Важным преимуществом контроллеров-оптимизаторов является их доступная цена в сравнении с преобразователями частоты. Однако, необходимо учитывать, что контроллеры-оптимизаторы не могут использоваться в случаях, когда требуется изменять скорость вращения электродвигателя.

Таким образом, контроллеры-оптимизаторы оперативно реагирует на изменения напряжения, экономят электроэнергию, уменьшают реактивную нагрузку на сеть и повышают КПД привода. Они также помогают сократить расходы на конденсаторные компенсирующие устройства, продлить срок службы оборудованию и повысить экологичность производства. Незаменимы они только в тех случаях, когда необходимо изменять скорость вращения электродвигателя.

Как правильно выбрать устройство, способное повысить КПД оборудования? Дело в том, что выбор определенного электропривода зависит от того, как он работает. Нужно понимать, что если необходимо изменять скорость привода, то здесь единственно верным выбором будет преобразователь частоты. Но если скорость вращения двигателя не изменяется или это не является целями, то более доступным решением будет использовать контроллеры-оптимизаторы. Такие устройства обойдутся значительно дешевле, чем преобразователи частоты.

На заметку: как повысить КПД электродвигателя

Если вы занимаетесь эксплуатацией электроприводов, то знаете, что их эффективность напрямую зависит от ряда факторов: степени загрузки по отношению к номинальной, конструкции, модели, степени износа и отклонения напряжения в сети от номинального. Кроме того, КПД электродвигателя может заметно снизиться после перемотки.

Чтобы оптимизировать работу электропривода, необходимо обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и, если возможно, частоту подаваемого тока. Для этого применяется специальное оборудование, позволяющее повысить КПД электродвигателя. Однако не всегда возможно или целесообразно реализовать все перечисленные меры.

Наиболее востребованные приборы, которые позволяют улучшить работу электродвигателя, – это частотные преобразователи и устройства плавного пуска. Первые изменяют скорость вращения двигателя путем изменения частоты питающего напряжения, а вторые ограничивают скорость нарастания пускового тока и его максимальное значение.

В данной статье мы рассмотрим современные решения для повышения КПД электродвигателей с точки зрения их эффективности работы и экономической целесообразности.

Повысить эффективность работы электродвигателя можно с помощью частотных преобразователей, которые изменяют однофазное или трехфазное напряжение с частотой 50 Гц на напряжение необходимой частоты (обычно в диапазоне от 1 Гц до 300-400 Гц, а иногда бывает и до 3000 Гц) и амплитуды. Частотные преобразователи подходят для использования в асинхронных двигателях.

Преобразователь частоты, который в профессиональной среде именуется "частотником", содержит микропроцессор управления, который отвечает за организацию работы электронных ключей, контроль за функционированием оборудования, его диагностику и защиту от повреждений. Кроме того, система состоит из нескольких схем, которые включены в режимы ключей и открывают тиристоры или транзисторы. Преобразователи частоты с тиристорами считаются более эффективными в сравнении с другими видами, так как они способны работать с высокими напряжениями и токами, а их КПД достигает 98%. Однако, при малой мощности, это преимущество практически незаметно.

Два класса приборов, отличающихся своей структурой и принципом работы:

  1. С непосредственной связью. В таких преобразователях присутствуют выпрямители. Эта система отвечает за отпирание тиристоров и подключение обмотки к сети, что ведет к образованию выходного напряжения со частотой 0-30 Гц и ограниченным диапазоном управления скоростью вращения привода. Такие устройства обычно не используются при оснащении мощного оборудования, регулирующего множество технологических параметров.
  2. С промежуточным звеном постоянного тока. В таких преобразователях происходит двойное преобразование энергии: входное напряжение выпрямляется, фильтруется и сглаживается, а затем, при помощи инвертора, преобразуется в напряжение с необходимой амплитудой и частотой. КПД оборудования может несколько снижаться из-за этого промежуточного звена, но подобные преобразователи частоты имеют широкое применение благодаря возможности получения на выходе напряжения с высокой частотой.

Наиболее популярными являются преобразователи второго типа, так как они позволяют плавно регулировать обороты двигателей.

Статья рассказывает о различных функциональных возможностях частотных преобразователей и их соответствии целям использования.

Использование преобразователей с невысокой перегрузочной способностью и U/f-управлением чаще всего применяется для электроприводов насосов и вентиляторов, где необходимо увеличить момент двигателя на низких частотах.

Более совершенные устройства с векторным управлением регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Они наиболее эффективны при использовании в конвейерном, прокатном, упаковочном, подъемном оборудования и прочих.

При необходимости контролируемого торможения двигателя используется функция замедления, которая может различаться в зависимости от его интенсивности. В таких случаях можно применять преобразователи с встроенным внешним блоком торможения и тормозным резистором или рекуперативным блоком торможения. Режим динамического торможения позволяет переводить механическую энергию в электрическую и либо рассеивать ее в тепло на сопротивлении тормозного резистора, либо возвращать энергию в сеть посредством рекуперации. Это решение актуально для станкового и конвейерного оборудования.

Частотные преобразователи с обратной связью обеспечивают более точное поддержание постоянной скорости вращения при переменной нагрузке, что повышает качество технологического процесса в замкнутых системах. Такие устройства широко используются в робототехнике, дерево- и металлообработке, а также в системах высокоточного позиционирования.

Недавно финансисты отметили, что стоимость "частотников" является очень волатильной. За год-полтора цены на эти устройства значительно увеличились. В настоящее время колебания валютного курса являются одной из причин такого явления. В 2021 году частотные преобразователи производства как России, так и других стран, мощностью 90 кВт, могли обойтись покупателям примерно в 200—700 тысяч рублей.

В данном случае мы имеем преобразователь частоты, который используется для асинхронного двигателя. Описав его рабочий принцип выше, можно утверждать, что данный прибор способен уменьшить затраты электроэнергии, обеспечить плавный запуск механизма, обеспечить точное регулирование скорости вращения при изменяющейся нагрузке и увеличить пусковой момент. Кроме того, все вышеперечисленное в сумме ведет к увеличению коэффициента полезного действия машины.

Несмотря на эти очевидные преимущества, следует отметить некоторые недостатки такого «частотника». В первую очередь, стоит заметить его достаточно высокую стоимость. Кроме того, в процессе эксплуатации преобразователь может создавать электромагнитные помехи.

Контроллеры-оптимизаторы: устройства для плавного пуска

Для обеспечения плавного запуска, разгона и остановки электродвигателя используются устройства плавного пуска (УПП). Они способны ограничивать скорость увеличения пускового тока в течение определенного времени и тем самым предотвращать повреждение оборудования.

Однако традиционные устройства плавного пуска имеют свой недостаток – они не улучшают КПД оборудования. К тому же они применяются только для управления приводами с невысокой нагрузкой на валу.

Но на сегодняшний день существуют контроллеры-оптимизаторы, которые позволяют повысить энергоэффективность двигателей. Они могут согласовывать крутящий момент с моментом нагрузки и, как следствие, снижать потребление электроэнергии на минимальных нагрузках на 30–40%. Эти устройства предназначены для приводов, не требующих изменения числа оборотов двигателя.

Например, чтобы снизить энергопотребление эскалатора при помощи преобразователя частоты, потребовалось бы уменьшить его скорость, но это невозможно, потому что тогда подъем пассажиров займет больше времени. Однако контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.

Контроллеры-оптимизаторы электродвигателя являются регуляторами напряжения питания, которые контролируют фазы тока и напряжения. Они гарантируют полное управление приводом на всех стадиях работы и предотвращают повышенное и пониженное напряжение, перегрузку, обрывы или нарушение чередования фаз. Путем изменения напряжения питания двигателя, контроллеры-оптимизаторы согласовывают значение механического момента, который развивает электродвигатель, с значением механического момента нагрузки на его валу. Последнее позволяет увеличить коэффициент мощности, а скорость вращения ротора электродвигателя остается неизменной.

Данное оборудование является самодостаточным и дополнительных устройств не требует. Кроме того, контроллер-оптимизатор обеспечивает прекращение отбора мощности во время динамической нагрузки, когда тиристоры закрыты и не проводят электрический ток. Управляющие импульсы открывают тиристоры при поступлении и закрывают переход тока через ноль. Отметим, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *